SADLER MATHEMATICS METHODS UNIT 2

WORKED SOLUTIONS

Chapter 4 Series

Exercise 4A

Question 1

a = 8, d = 6

a
$$S_4 = \frac{4}{2}[2(8) + 3(6)]$$

= 68

b
$$S_5 = \frac{5}{2}[2(8) + 4(6)]$$

= 100

c
$$S_6 = \frac{6}{2}[2(8) + 5(6)]$$

= 138

Question 2

a = 28, d = 3

a
$$S_2 = \frac{2}{2}[2(28) + 1(-3)]$$

= 53

b
$$S_6 = \frac{6}{2} [2(28) + 5(-3)]$$

= 123

c $S_1 = a = 28$

a = -6, d = 3
a
$$S_2 = \frac{2}{2}[2(-6) + 1(3)]$$

= -9
b $S_5 = \frac{5}{2}[2(-6) + 4(3)]$
= 0
c $S_6 = \frac{6}{2}[2(-6) + 5(3)]$
= 9

Question 4

- $T_{1} = 5(1) + 1 = 6$ $T_{2} = 5(2) + 1 = 11$ $T_{3} = 5(3) + 1 = 16$ $T_{4} = 5(4) + 1 = 21$ $S_{1} = 6$ $S_{2} = 6 + 11 = 17$ $S_{3} = 17 + 16 = 33$

 $S_4 = 33 + 21 = 54$

Question 5

$$\begin{split} T_1 &= 11 \\ T_2 &= 11 + 3 = 14 \\ T_3 &= 14 + 3 = 17 \\ T_4 &= 17 + 3 = 20 \\ S_1 &= 11 \\ S_2 &= 11 + 14 = 25 \\ S_3 &= 25 + 17 = 42 \\ S_4 &= 42 + 20 = 62 \end{split}$$

 $T_{1} = 25 - 3(1) = 22$ $T_{2} = 25 - 3(2) = 19$ $T_{3} = 25 - 3(3) = 16$ $T_{4} = 525 - 3(4) = 13$ $S_{1} = 22$ $S_{2} = 22 + 19 = 41$ $S_{3} = 41 + 16 = 57$ $S_{4} = 57 + 13 = 70$

Question 7

 $T_{1} = S_{1} = 25$ $T_{2} = S_{2} - S_{1}$ = 57 - 25 = 32 $T_{3} = S_{3} - S_{2}$ = 96 - 57 = 39 $T_{4} = S_{4} - S_{3}$ = 142 - 96 = 46 $T_{5} = S_{5} - S_{4}$ = 195 - 142 = 53

25, 32, 39, 46, 53 is an arithmetic sequence

$$T_{1} = S_{1} = 1$$

$$T_{2} = S_{2} - S_{1}$$

$$= 5 - 1$$

$$= 4$$

$$T_{3} = S_{3} - S_{2}$$

$$= 14 - 5$$

$$= 9$$

$$T_{4} = S_{4} - S_{3}$$

$$= 30 - 14$$

$$= 16$$

$$T_{5} = S_{5} - S_{4}$$

$$= 55 - 30$$

$$= 25$$

1,4,9, 16, 25 is not an arithmetic sequence

Question 9

a = 5, d = 11 **a** $S_3 = \frac{3}{2}[2(5) + 2(11)]$ = 48

b
$$S_{40} = \frac{40}{2} [2(5) + 39(11)]$$

= 8780

a = 60, d = -2
a
$$S_3 = \frac{3}{2}[2(60) + 2(-2)]$$

= 174
b $S_{60} = \frac{60}{2}[2(60) + 59(-2)]$
= 60

Question 11

$$a = 1, l = 100, n = 100$$
$$S_{100} = \frac{100}{2} [1 + 100]$$
$$= 5050$$

Question 12

a = 16, d = 4

a
$$T_{29} = 16 + 27(4)$$

= 128

or

$$T_{n} = a + (n-1)d$$

$$128 = 16 + (n-1)4$$

$$4(n-1) = 11$$

$$n-1 = 28$$

$$n = 29$$

$$C_{n} = \frac{29}{12} (2, 0) = 26$$

b
$$S_{29} = \frac{29}{2} [2(16) + 28(4)]$$

= 2088

$$a = 9, d = 17$$

$$a \qquad T_n = a + (n-1)d$$

$$689 = 9 + (n-1)7$$

$$17(n-1) = 680$$

$$n-1 = 40$$

$$n = 41$$

b $S_{41} = \frac{41}{2} [2(9) + 40(17)]$ = 14 309

Question 14

20, 22, 24...
$$\Rightarrow a = 2, d = 2$$

a $T_{30} = 20 + 29(2)$
 $= 78 \text{ km}$

b
$$S_{30} = \frac{30}{2} [2(20) + 29(2)]$$

= 1470 km

Question 15

5, 7, 9...
$$\Rightarrow a = 5, d = 2$$

 $S_{15} = \frac{15}{2} [2(5) + 14(2)]$
 $= 285 \text{ trees}$

Question 16

4000, 3750, 3500...
$$\Rightarrow a = 4000, d = -250$$

 $S_{12} = \frac{12}{2} [2(4000) + 11(-250)]$
 $= \$31500$

© Cengage Learning Australia Pty Ltd 2018

a 65 000, 67 500, 70 000...
$$\Rightarrow a = 65 000, d = 2500$$

 $S_{10} = \frac{10}{2} [2(65 000) + 9(2500)]$
 $= \$762500$

b

68 000, 69 200, 70 400...
$$\Rightarrow a = 68 000, d = 1200$$

 $S_{10} = \frac{10}{2} [2(68 000) + 9(1200)]$
 $= \$734\ 000$

Question 18

Month	Balance	Interest		
1	36 000	720		
2	34 000	680		
3	32 000	640		

Interest payments form an arithmetic sequence with a = 720, d = -40

$$S_{18} = \frac{18}{2} [2(720) + 17(-40)]$$

= \$6840

Exercise 4B

Question 1

 $T_{1} = 2(3)^{1} = 6$ $T_{2} = 2(3)^{2} = 18$ $T_{3} = 2(3)^{3} = 54$ $T_{4} = 2(3)^{4} = 162$ $S_{1} = T_{1} = 6$ $S_{2} = T_{1} + T_{2}$ = 6 + 18 = 24 $S_{3} = S_{2} + T_{3}$ = 24 + 54 = 78 $S_{4} = S_{3} + T_{4}$ = 78 + 162 = 240

 $T_2 = 1.5T_1$ $24 = 1.5T_1$ $T_1 = 16$ $T_3 = 1.5T_2$ $= 1.5 \times 24$ = 36 $T_4 = 1.5T_3$ $=1.5 \times 36$ = 54 $S_1 = T_1 = 16$ $S_2 = T_1 + T_2$ =16+24= 40 $S_3 = S_2 + T_3$ =40+36=76 $S_4 = S_3 + T_4$ = 76 + 54=130

$$T_{1} = S_{1} = 1$$

$$T_{2} = S_{2} - S_{1}$$

$$= 2 - 1$$

$$= 1$$

$$T_{3} = S_{3} - S_{2}$$

$$= 4 - 2$$

$$= 2$$

$$T_{4} = S_{4} - S_{3}$$

$$= 7 - 4$$

$$= 3$$

$$T_{5} = S_{5} - S_{4}$$

$$= 12 - 7$$

$$= 5$$

1, 1, 2, 3, 5 is not a geometric sequence

Question 4

 $T_{1} = S_{1} = 8$ $T_{2} = S_{2} - S_{1}$ = 32 - 8 = 24 $T_{3} = S_{3} - S_{2}$ = 104 - 32 = 72 $T_{4} = S_{4} - S_{3}$ = 320 - 104 = 216 $T_{5} = S_{5} - S_{4}$ = 968 - 320 = 648

8, 24, 72, 216, 648 is a geometric sequence

$$a = 1, r = 1$$

$$S_{15} = \frac{1(2^{15} - 1)}{2 - 1}$$

= 32767

Question 6

$$a = 20 \ 480, r = 0.5$$
$$S_{15} = \frac{20 \ 480(1 - 0.5^{11})}{1 - 0.5}$$
$$= 40 \ 940$$

Question 7

$$S_9 = \frac{256(2.5^9 - 1)}{2.5 - 1}$$

= 650 871

$$S_9 = \frac{62\ 500(1-0.4^9)}{1-0.4}$$

= 104\ 139.36

$$a = 2.25, r = 4$$

$$S_{6} = \frac{2.25(4^{6} - 1)}{4 - 1}$$

$$= 3071.25$$

$$S_{7} = 3071.25 + 9216$$

$$= 12\ 287.25$$

$$T_{8} = 9216 \times 4$$

$$= 36\ 684$$

$$S_{8} = 12\ 287.25 + 36\ 864$$

$$= 49\ 151.25$$

$$a = 5, r = 2$$

$$S_n = \frac{5(2^n - 1)}{2 - 1} > 5\ 000\ 000$$

Solve by classpad or

$$5(2^n - 1) > 5\ 000\ 000$$

$$2^n - 1 > 1\ 000\ 001$$

$$n > 19.93$$

∴ $n = 20$

$$a = 28, r = 1.5$$

$$S_n = \frac{28(1.5^n - 1)}{1.5 - 1} > 1\,000\,000$$

By classpad,
 $n > 24.1$
∴ $n = 25$

Question 12

 $T_3 = ar^2 = 24$ $T_4 = ar^3 = 96$ $\Rightarrow r = 4$ $T_3 = a(4)^2 = 24$ a = 1.5

$$T_{10} = 1.5(4)^9$$

= 393 216
$$S_{10} = \frac{1.5(4^{10} - 1)}{4 - 1}$$

= 524 287.5

Question 13

50 000, 57 500, 66 125... a = 50 000, r = 1.15 $S_{10} = \frac{50\ 000(1.15^{10}-1)}{1.15-1}$ $= 1\ 015\ 185.91$

In 10 years, \$1 1015 000

a = 5000, r = 1.1

- **a** $5000 \times 1.1 = 5500$ tonnes
- **b** $5500 \times 1.1 = 6050$ tonnes
- **c** $6050 \times 1.1 = 6655$ tonnes

d $S_{12} = \frac{5000(1.1^{12} - 1)}{1.1 - 1}$ = 106 921.4

107 000 tonnes

Question 15

а	$60\ 000 \times 1.15 = \$69\ 000$

b 69 000 \times 1.15 = \$79 350

c
$$T_{10} = 60\ 000(1.15)^9$$

= 211 072.58
∴ \$211 000

d
$$S_{10} = \frac{60\ 000(1.15^{10}-1)}{1.15-1}$$

= \$1\ 218\ 223.10
∴ \$1\ 218\ 000

On 1/1/18	$1200 \times 1.1^{4} + 1200 \times 1.1^{3} + 1200 \times 1.1^{2} + 1200 \times 1.1 + 1200$
On 1/1/29	$1200 \times 1.1^{15} + 1200 \times 1.1^{14} + 1200 \times 1.1^{13} + + 1200$ = 1200(1+1.1+1.1 ² + + 1.1 ¹⁵)
	$= 1200 \times 1 \frac{(1.1^{16} - 1)}{0.1}$
	=43139.68
	= 43 140

\$43 140 in the account

Dec 2015	1000×1.07
Dec 2016	$1000 \times 1.07^{2} + 1000 \times 1.07$
Dec 2017	$1000 \times 1.07^3 + 1000 \times 1.07^2 + 1000 \times 1.07$
:	
Dec 2024	$1000 \times 1.07^{10} + 1000 \times 1.07^9 + + 1000 \times 1.07$

$$S_{10} = \frac{1070(1.07^{10} - 1)}{1.07 - 1}$$

= 14 783.60
∴ \$14 784 to the nearest dollar

2500, 2550, 2601 \Rightarrow *a* = 2500, *r* = 1.02 $T_4 = 2500 \times 1.03^3$ а = 2653 $T_{15} = 2500 \times 1.02^{14}$ b = 3299 $T_{16} = 3299$ С $S_{15} = \frac{2500(1.02^{15} - 1)}{1.02 - 1}$ d = 43 233 \therefore 43 200 items to the nearest hundred 43 233 + 25 × 3299 е =125 708

 \therefore 125 700 items to the nearest hundred

Question 19

8000, 8000, 8000, 7200, 6480...

a 8000×0.9ⁿ⁻¹ = 1900
n-1=13.6
n = 14.6
∴ during year 17
b
$$S_{15} = \frac{8000(1-0.9^{15})}{1-0.9}$$

= 63528.7
Total: 63 528.7 + 16 000
= 79 528.7
≈ 79500 tonnes

a
$$a = P, r = 1.095, n = 21$$

b
$$S_{21} = \frac{P(1.095^{21} - 1)}{1.095 - 1}$$

= 50 000
By classpad, $P = 829.7

Geometric progression A

$$a = 24, r = \frac{9.6}{24} = 0.4$$

$$S_{\infty} \text{ exists as } |r| < 1$$

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{24}{1-0.4}$$

$$= 40$$

Geometric progression B

$$a = 8, r = \frac{12}{8} = 1.5$$

 S_{∞} does not exist as |r| > 1

Geometric progression C

$$a = 35, r = \frac{10.5}{35} = 0.3$$

$$S_{\infty} \text{ exists as } |r| < 1$$

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{35}{1-0.3}$$

$$= 50$$

a $a = 100, r = 0.5 \therefore S_{\infty}$ exists $S_{\infty} = \frac{100}{1 - 0.5}$ = 200 **b** $a = 100, r = 0.75 \therefore S_{\infty}$ exists $S_{\infty} = \frac{100}{1 - 0.75}$ = 400 **c** $a = 100, r = 1.1 \therefore S_{\infty}$ does not exist **d** $a = 90, r = 0.8 \therefore S_{\infty}$ exists $S_{\infty} = \frac{90}{1 - 0.8}$ = 450

e $a = 56, r = 1.25 \therefore S_{\infty}$ does not exist

f
$$a = 90, r = -0.8 \therefore S_{\infty}$$
 exists
 $S_{\infty} = \frac{90}{1 - (-0.8)}$
 $= 50$
g $a = 0.6, r = \frac{1}{3} \therefore S_{\infty}$ exists
 $S_{\infty} = \frac{0.6}{1 - \frac{1}{3}}$

$$= 0.9$$

$$\mathbf{h} \qquad a = 2304, r = -\frac{1}{8} \therefore S_{\infty} \text{ exists}$$

$$S_{\infty} = \frac{2304}{1 - (-^{\perp})}$$

$$1 - (-\frac{1}{8})$$

= 2048

$$S_{\infty} = \frac{a}{1-r}$$
$$120 = \frac{48}{1-r}$$
$$1-r = \frac{48}{120}$$
$$r = \frac{3}{5}$$

$$S_{\infty} = \frac{a}{1-r}$$
$$120 = \frac{a}{1-0.45}$$
$$a = 120 \times 0.55$$
$$r = 66$$

Injection	Before	After	Before	After
1	0	15	0	15
2	6	21	15×0.4	15×0.4+15
3	8.4	23.4	$15 \times 0.4^{2} + 15 \times 0.4$	$15 \times 0.4^{2} + 15 \times 0.4 + 15$
4	9.36	24.36	$15 \times 0.4^3 + 15 \times 0.4^2 + 15 \times 0.4$	$15 \times 0.4^3 + 15 \times 0.4^2 + 15 \times 0.4 + 15$

a The terms in the 'After' column can be written as $15(1+0.4+0.4^2+0.4^3+...)$

$$15 \times S_{\infty}$$
$$= 15 \times \frac{1}{1 - 0.4}$$
$$= 25 \text{ mg}$$

b The terms in the 'After' column can be written as $15(0.4+0.4^2+0.4^3+...)$

 $15 \times S_{\infty}$

$$=15 \times \frac{0.4}{1-0.4}$$
$$=10 \text{ mg}$$

Question 6

 $50, 40, 32 \Longrightarrow a = 50, r = 0.8$ $S_{\infty} = \frac{50}{1 - 0.2}$ = 250

See the paragraph in text for a comment.

a $60\% \times 2 = 1.2 \text{ m}$

b $2 \times 0.6^6 = 0.0933 \text{ m}$ = 9.3 cm

Approximately 9 cm.

c Consider the drop heights only: 2, 1.2, 0.72....

$$S_{\infty} = \frac{2}{1 - 0.6}$$
$$= 5 \text{ m}$$

The total distance travelled is $5 \times 2 - 2 = 8$ m

(The first 2 m does not count as the ball does not bounce up to start.)

Question 8

5, 2, 0.8, 0.32... a = 5, r = 0.4

$$S_{\infty} = \frac{5}{1 - 0.4}$$
$$= 8\frac{1}{3} \mathrm{m}$$

The total distance travelled is $8\frac{1}{3} \times 2 - 5 = 11\frac{2}{3}$ m.

Miscellaneous exercise four

Question 1

а	2^{6}
b	2 ⁸
С	2^{7}
d	2^2
е	2 ¹⁰
f	2^2
g	$2^2 \times 2^3 \times 2^4 \times 2^5 = 2^{14}$
h	2^{0}
i	
	36 - 4 = 32
	$32 = 2^5$

Question 2

 $\frac{1}{2}$

Question 3

 $4^2 = 16$

Question 4

 $\frac{9}{4} = 2\frac{1}{4}$

1

Question 6

 $4^3 = 64$

Question 7

$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

Question 8

$$\frac{3^{7} \times (3^{3})^{2}}{3^{14}} = \frac{3^{7} \times 3^{6}}{3^{14}} = \frac{1}{3}$$

Question 9

 $\frac{5^8}{5^4} \times \frac{1}{5^3}$ = 5

$$\frac{7^{10}}{7^2 \times (7^2)^2 \times 7^5} = \frac{7^{10}}{7^{11}} = \frac{1}{7}$$

Question 11

$$\frac{2^n}{2^n} = 1$$
$$\frac{2^n}{2^n} = 2^{n-n} = 2^0$$
$$\therefore 2^0 = 1$$

- **a** 17, 22, 27, 32, 37
- **b** 100, 93, 86, 79, 72
- **c** 5, 15, 45, 135, 405
- **d** $T_1 = 6, T_{n+1} = T_n + 4$
- **e** $T_1 = 2, T_{n+1} = 3T_n$
- **f** $T_1 = 17, T_{n+1} = T_n 8$

a Exponential pattern
$$\Rightarrow T_{n+1} = kT_n$$

 $T_1 = 1, T_2 = 2, T_3 = 4, T_4 = 8, T_5 = 16$
 $k = 2$
 $T_1 = 1, r = 2$
 $T_{20} = 1 \times 2^{19}$
 $= 524\ 288$

b Linear pattern $\Rightarrow T_{n+1} = T_n + a$ $T_1 = 5, T_2 = 8, T_3 = 11, T_4 = 14, T_5 = 17$ $T_1 = 5, a = 3$ $T_{20} = 5 + 19 \times 3$ = 62

a
⁶C₄ =
$$\frac{6!}{2!4!}$$

= $\frac{6 \times 5 \times 4!}{2 \times 4!}$
= 15
b
ⁿC₂ = $\frac{n!}{(n-2)!2!}$
= $\frac{n(n-1)(n-2)!}{(n-2)!2!}$
= $\frac{n(n-1)}{2}$

a
8, x, 50

$$50 - x = x - 8$$

 $58 = 2x$
 $x = 29$
 $T_1 = 8, T_{n+1} = T_n + 21$
b
8, x, 50
 $\frac{x}{8} = \frac{50}{x}$
 $x^2 = 400$
 $x = \pm 20$
 $T_1 = 8, T_{n+1} = \pm 2.5T_n$

- **a** in approximately 3.5 years time
- **b** in approximately 7 years time

Day	1	2	3	4	5	21
Days until competition	21	20	19	18	17	
Time	30	33	36	39	42	

 $T_n = T_{n+1} + 3, \quad T_1 = 30$ $T_{21} = a + 20d$ = 30 + 20(3)= 90

33, 36, 39... 90

$$S_n = \frac{20}{2}(33+90)$$

=1230 minutes

= 20 hours 30 minutes

Option A

Value after 20 years: $1\,000\,000 \times 1.06^{20} = \$3\,207\,135.47$

Option B

Beginning of Y1: 50 000

Beginning of Y2: 50 000×1.06+50 000

Beginning of Y3: $50\ 000 \times 1.06^2 + 50\ 000 \times 1.06 + 50\ 000$

End of Y20: 50 000×1.06²⁰ + 50 000×1.06¹⁹ + 50 000×1.06 = 50 000(1.06²⁰ + 1.06¹⁹ + ... + 1.06)

Value after 20 years: 50 000 × $\frac{1.06(1.06^{20} - 1)}{1.06}$ = 1949 636.334

Let *x* represent the amount of money to be invested in the bank account to cover future payments.

At the beginning of year 2, the amount of money in the account is $x \times 1.06 - 50\ 000$

At the beginning of year 3, the amount of money in the account is $(x \times 1.06 - 50\ 000) \times 1.06 - 50\ 000$ = $1.06^2 x - 50\ 000 \times 1.06 - 50\ 000$

At the beginning of year 4, the amount of money in the account is $(1.06^{2}x-50\ 000\times1.06-50\ 000)\times1.06-50\ 000$ $=1.06^{3}x-50\ 000\times1.06^{2}-50\ 000\times1.06-50\ 000$

In the last year, year 20, the amount of money in the account is

 $1.06^{19}x - 50\ 000 \times 1.06^{18} - 50\ 000 \times 1.06^{17} - \dots - 50\ 000$ $= 1.06^{19}x - 50\ 000(1.06^{18} + 1.06^{17} + \dots + 1)$

$$1.06^{18} + 1.06^{17} + \ldots + 1 = \frac{1(1.06^{19} - 1)}{0.06}$$

At the end of year 20 the balance of the account is zero.

Using classpad to solve $x \times 1.06^{19} - \frac{50\ 000 \times (1.06^{19} - 1)}{0.06} = 0$ gives $x = 557\ 905.82$

The organisers need to have \$607 906 (nearest dollar) available to cover the first payment of \$50 000 and the investment amount.

© Cengage Learning Australia Pty Ltd 2018